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INTRODUCTIONINTRODUCTION

Noise is present in many situations of daily life for ex: Microphones will record Noise is present in many situations of daily life for ex: Microphones will record 

noise and speech.noise and speech.

Goal: Reconstruct original signalGoal: Reconstruct original signal

Wiener filtering is a method to estimate the original signal as close as possible from Wiener filtering is a method to estimate the original signal as close as possible from 

the signals degraded by additive white noise the signals degraded by additive white noise the signals degraded by additive white noise the signals degraded by additive white noise 

Wiener Filter is the one which is based on the Linear minimum mean square Wiener Filter is the one which is based on the Linear minimum mean square 

error(LMMSE).error(LMMSE).

Calculation of the Wiener filter requires the assumption that the signal and noise Calculation of the Wiener filter requires the assumption that the signal and noise Calculation of the Wiener filter requires the assumption that the signal and noise Calculation of the Wiener filter requires the assumption that the signal and noise 

processes are secondprocesses are second--order stationary. For this description,  the data is WSS  with order stationary. For this description,  the data is WSS  with 

zero mean will be considered . zero mean will be considered . 



Wiener filteringWiener filtering

There are three main problems that we will studyThere are three main problems that we will study

SmoothingSmoothing

Filtering   Filtering   

Prediction     Prediction     

to solve all three above problems  we useto solve all three above problems  we useto solve all three above problems  we useto solve all three above problems  we use

ΘΘˆ̂= C= CΘΘx x CCxxxx
--11 xx

and the minimum MSE matrix given byand the minimum MSE matrix given by

MMθˆθˆ = C= Cθθθθ -- CCΘΘx x CCxxxx
--11 CCxxθθ





SMOOTHINGSMOOTHING

Θ=Θ=s[n]  is to be  estimated for  n=0,1,………Ns[n]  is to be  estimated for  n=0,1,………N--1 based on the data set     1 based on the data set     

{ x[0],x[1],…….x[N{ x[0],x[1],…….x[N--1] } , where  x[n]= s[n] + w[n].1] } , where  x[n]= s[n] + w[n].{ [ ], [ ], [{ [ ], [ ], [ ] } , [ ] [ ] [ ]] } , [ ] [ ] [ ]

In this an estimation can not be obtained until all the data has been In this an estimation can not be obtained until all the data has been 

collectedcollected

Then the wiener estimation of the signal isThen the wiener estimation of the signal is



The corresponding minimum MSE matrix isThe corresponding minimum MSE matrix is

Where   W= RWhere   W= Rssss (R(Rss ss + R+ Rwwww ) ) --11 is referred to as the wiener smoothing         is referred to as the wiener smoothing         

matrixmatrix

If N=1, we would estimate s[0] based on X[0]=S[0]+w[0]. Then, the If N=1, we would estimate s[0] based on X[0]=S[0]+w[0]. Then, the 

wiener smoother W is given bywiener smoother W is given by

W= W= rr ss ss [0]  [0]  // (r(r ss ss [0] + [0] + rr wwww [0] [0] ))

== ηη / (/ (ηη+1)+1)

where         where         ηη= = rr ss ss [0] [0] // rr ww ww [0]     is the SNR                [0]     is the SNR                



For high SNR so what WFor high SNR so what W 1  we have 1  we have Ŝ[0]Ŝ[0] X[0]  X[0]  For high SNR so what WFor high SNR so what W 1, we have 1, we have Ŝ[0]Ŝ[0] X[0], X[0], 

while for a low SNR so what Wwhile for a low SNR so what W 0, we have 0, we have Ŝ[n]Ŝ[n] 0.0.

The corresponding minimum MSE isThe corresponding minimum MSE is

MM ŝŝ ==( ( 11-- WW) r ) r ssss [0] [0] 

=  =  ((1 1 -- ηη / (/ (ηη+1)+1) )) rr ss ss [0] [0] 

which  for these two extremes is either 0 for a high SNR  which  for these two extremes is either 0 for a high SNR  r r [0] for a low [0] for a low which  for these two extremes is either 0 for a high SNR , which  for these two extremes is either 0 for a high SNR , r r xxxx [0] for a low [0] for a low 
SNRSNR



FILTERINGFILTERING
In this we estimate  In this we estimate  θθ = = s[n] s[n] based on x[m]=s[m]+w[m]  for    based on x[m]=s[m]+w[m]  for    

m=0,1,2………n.m=0,1,2………n.

The above problem is to filter the signal from noise, the signal sample isThe above problem is to filter the signal from noise, the signal sample is
estimated based on the present and past data only.estimated based on the present and past data only.

CCxxxx =R=Rssss + R+ Rwwww

AlsoAlso

Then the estimator of the signal isThen the estimator of the signal is

Ŝ[n] = Ŝ[n] = rr’’ssss T T (R(Rssss + R+ Rwwww )) --11 xx



Ŝ[n]  Ŝ[n]  = a= aT T xx

where    a= (Rwhere    a= (Rss ss + R+ Rwwww ) ) --11 r’r’ssss

To make the filtering correspondence we let  h(n)[k] = a n-k

Then

where where h(n)[k]  is the time varying FIR filter
To find the impulse response h we note that since



Written out, the set of linear equations becomesWritten out, the set of linear equations becomes

These are the wienerThese are the wiener--HopfHopf filtering equationsfiltering equationspp g qg q

For large enough n it can be shown that the filter becomes time invariant,  For large enough n it can be shown that the filter becomes time invariant,  
the Wienerthe Wiener--HopfHopf filtering equations can be written asfiltering equations can be written as

The same set of equations result if we attempt to estimate s[n] based on  The same set of equations result if we attempt to estimate s[n] based on  
the present and infinite past . This is termed the infinite wiener filter.the present and infinite past . This is termed the infinite wiener filter.

let     let     



And use the orthogonality principle. And use the orthogonality principle. 

Then,Then, E[ E[ (S[n] (S[n] -- Ŝ[n] ) x[nŜ[n] ) x[n--l]) l]) ]] =0    ;   l=0,1…….=0    ;   l=0,1…….

Hence    Hence    Hence,   Hence,   

and therefore, the equations to be solved for the infinite wiener filter and therefore, the equations to be solved for the infinite wiener filter 

impulse response areimpulse response are



The smoothing estimator takes the formThe smoothing estimator takes the form
∞ ∞ 

Ŝ[n]        =      Ŝ[n]        =      ∑  ∑  a a kk x[k]x[k]
k=k=-- ∞∞

And by letting h[k]=a And by letting h[k]=a nn--k  k  we have the convolution sumwe have the convolution sum

∞ ∞ 

Ŝ[n]        =      Ŝ[n]        =      ∑∑ h[k]  x[nh[k]  x[n--k]k]
kk ∞∞k=k=-- ∞∞

The wiener equation becomesThe wiener equation becomes
∞ ∞ ∞ ∞ 

∑∑ h[k]  h[k]  rr xxxx [l[l--k]   = k]   = rr ssss [ l ]     ;  [ l ]     ;  --∞ < l < ∞∞ < l < ∞

k=k=-- ∞∞



The difference from the filtering case is that now the equations must be The difference from the filtering case is that now the equations must be 
satisfied  for all, and there is no constraint that h[k] must be causal.satisfied  for all, and there is no constraint that h[k] must be causal.

Hence we can use Fourier transform techniques to solve for the impulse Hence we can use Fourier transform techniques to solve for the impulse 
response   thenresponse   then

H(f) =  PH(f) =  P ss ss (f)  / P(f)  / P xx xx (f)                 (f)                 

= P= P ss ss (f)  (f)  // ((PP ss ss (f) +(f) + PP wwww (f) (f) ))ss ss ( )( ) // (( ss ss ( )( ) wwww ( )( ) ))

If we define SNR as           If we define SNR as           ηη(f) = P(f) = P ss ss (f) / P(f) / P wwww (f) (f) 

Then the optimal filter frequency response becomesThen the optimal filter frequency response becomes

H(f)  H(f)  ηη(f) / ((f) / (ηη(f)+1)(f)+1)H(f) = H(f) = ηη(f) / ((f) / (ηη(f)+1)(f)+1)

Clearly, the filter response satisfies  0< H(f) < 1 ,  and the wiener Clearly, the filter response satisfies  0< H(f) < 1 ,  and the wiener 
smoother response is H(f) ≈ 0 when smoother response is H(f) ≈ 0 when ηη(f) ≈ 0 and H(f) ≈1 when n(f)(f) ≈ 0 and H(f) ≈1 when n(f) ∞∞smoother response is H(f) ≈ 0 when smoother response is H(f) ≈ 0 when ηη(f) ≈ 0 and H(f) ≈1 when n(f)(f) ≈ 0 and H(f) ≈1 when n(f) ∞∞



PREDICTIONPREDICTIONPREDICTIONPREDICTION
The prediction problem in which we estimate The prediction problem in which we estimate θθ =X[N=X[N--1+l] for l≥1 based 1+l] for l≥1 based p pp p [[ ]]
on on X.X.
we use we use CCxxxx==RRxx  xx  andand

let the latter vector be denoted by r’let the latter vector be denoted by r’TTxxxx. Then. Then



let h[Nlet h[N--k]=ak]=akk to allow filtering interpretationto allow filtering interpretation

RR h=rh=rRRxxxxh=rh=rxxxx

====



The minimum MSE for lThe minimum MSE for l--step linear predictor isstep linear predictor is

Assume that x[n] is an AR(1) process with ACFAssume that x[n] is an AR(1) process with ACFAssume that x[n] is an AR(1) process with ACFAssume that x[n] is an AR(1) process with ACF



Let l=1 and we solve for the h[k].Let l=1 and we solve for the h[k].
NN

∑  h[k]  r ∑  h[k]  r xxxx [m[m--k]   = r k]   = r xxxx [ m ]     ;  m=1,2,……,N[ m ]     ;  m=1,2,……,N
k=1k=1
NN

∑  h[k]  (∑  h[k]  (--a[1])a[1])││mm--kk││ = (= (--a[1])a[1])││mm││ ; m=1,2,……,N; m=1,2,……,N
k=1k=1

On solving above equation we get On solving above equation we get g q gg q g

The one step linear predictor is  The one step linear predictor is  

And the minimum MSE is And the minimum MSE is 



Similarly, the l step predictor by solving Similarly, the l step predictor by solving 
NNNN

∑  h[k]  r ∑  h[k]  r xxxx [m[m--k]   = r k]   = r xxxx [ m+l[ m+l--1 ]     ;  m=1,2,……,N1 ]     ;  m=1,2,……,N
k=1k=1

substituting the ACF for an AR(1) process, this becomessubstituting the ACF for an AR(1) process, this becomes
NN

∑  h[k]  (∑  h[k]  (--a[1])a[1])││mm--kk││ = (= (--a[1])a[1])││m+lm+l--11││ ; m=1,2,……,N; m=1,2,……,N
k=1k=1

Then the impulse response isThen the impulse response is

The l step predictor is  The l step predictor is  p pp p



and the minimum MSE for l step predictor isand the minimum MSE for l step predictor isp pp p

The predictor decays to zero with increase in l  since The predictor decays to zero with increase in l  since ││a[1]a[1]││<1  <1  This is This is The predictor decays to zero with increase in l, since The predictor decays to zero with increase in l, since ││a[1]a[1]││<1. <1. This is This is 

also reflected in the minimum MSE, which is smallest for l=1 and also reflected in the minimum MSE, which is smallest for l=1 and 

increases for larger one.increases for larger one.



THANK YOUTHANK YOU


