WIENER FILTERING

Presented by N.Srikanth(Y8104060), M.Manikanta PhaniKumar(Y8104031).

INDIAN INSTITUTE OF TECHNOLOGY KANPUR Electrical Engineering dept.

INTRODUCTION

- Noise is present in many situations of daily life for ex: Microphones will record noise and speech.
- Goal: Reconstruct original signal
- Wiener filtering is a method to estimate the original signal as close as possible from the signals degraded by additive white noise
- Wiener Filter is the one which is based on the Linear minimum mean square error(LMMSE).
- Calculation of the Wiener filter requires the assumption that the signal and noise processes are second-order stationary. For this description, the data is WSS with zero mean will be considered.

Wiener filtering

There are three main problems that we will study

Smoothing

Filtering

Prediction

to solve all three above problems we use

$$\Theta^{\hat{}} = C_{\Theta x} C_{xx}^{-1} x$$

and the minimum MSE matrix given by

$$M_{\theta^{\wedge}} = C_{\theta\theta} - C_{\Theta x} C_{xx}^{-1} C_{x\theta}$$

SMOOTHING

- $\Theta=s[n]$ is to be estimated for n=0,1,....N-1 based on the data set $\{x[0],x[1],....x[N-1]\}$, where x[n]=s[n]+w[n].
- In this an estimation can not be obtained until all the data has been collected

$$\mathbf{C}_{xx} = \mathbf{R}_{xx} = \mathbf{R}_{ss} + \mathbf{R}_{ww}.$$

$$\mathbf{C}_{\theta x} = E(\mathbf{s}\mathbf{x}^T) = E(\mathbf{s}(\mathbf{s} + \mathbf{w})^T) = \mathbf{R}_{ss}.$$

Then the wiener estimation of the signal is

$$\hat{\mathbf{s}} = \mathbf{R}_{ss}(\mathbf{R}_{ss} + \mathbf{R}_{ww})^{-1}\mathbf{x}.$$

The corresponding minimum MSE matrix is

$$\mathbf{M}_{\hat{s}} = \mathbf{R}_{ss} - \mathbf{R}_{ss} (\mathbf{R}_{ss} + \mathbf{R}_{ww})^{-1} \mathbf{R}_{ss}$$
$$= (\mathbf{I} - \mathbf{W}) \mathbf{R}_{ss}.$$

Where $W = R_{ss} (R_{ss} + R_{ww})^{-1}$ is referred to as the wiener smoothing matrix

If N=1, we would estimate s[0] based on X[0]=S[0]+w[0]. Then, the wiener smoother W is given by

$$W = r_{ss} [0] / (r_{ss} [0] + r_{ww} [0])$$

$$= \eta / (\eta + 1)$$

where
$$\eta = r_{ss} [0] / r_{ww} [0]$$
 is the SNR

For high SNR so what $W \rightarrow 1$, we have $\hat{S}[0] \rightarrow X[0]$,

while for a low SNR so what $W \rightarrow 0$, we have $\hat{S}[n] \rightarrow 0$.

The corresponding minimum MSE is

$$M_{\hat{s}} = (1 - W) r_{ss} [0]$$

= $(1 - \eta / (\eta + 1)) r_{ss} [0]$

which for these two extremes is either 0 for a high SNR , r $_{\rm xx}$ [0] for a low SNR

FILTERING

In this we estimate $\theta = s[n]$ based on x[m]=s[m]+w[m] for m=0,1,2....n.

The above problem is to filter the signal from noise, the signal sample is estimated based on the present and past data only.

$$C_{xx} = R_{ss} + R_{ww}$$

Also

$$\mathbf{C}_{\theta x} = E(s[n] [x[0] x[1] \dots x[n]])$$

= $E(s[n] [s[0] s[1] \dots s[n]])$
= $[r_{ss}[n] r_{ss}[n-1] \dots r_{ss}[0]].$

Then the estimator of the signal is

$$\hat{S}[n] = r'_{ss} T (R_{ss} + R_{ww})^{-1} x$$

$$\hat{S}[n] = a^T x$$

where
$$a = (R_{ss} + R_{ww})^{-1} r'_{ss}$$

To make the filtering correspondence we let $h^{(n)}[k] = a_{n-k}$

Then

$$\hat{s}[n] = \sum_{k=0}^{n} a_k x[k]$$

$$= \sum_{k=0}^{n} h^{(n)}[n-k]x[k]$$

$$\hat{s}[n] = \sum_{k=0}^{n} h^{(n)}[k]x[n-k]$$

where h⁽ⁿ⁾[k] is the time varying FIR filter
To find the impulse response h we note that since

$$(\mathbf{R}_{ss} + \mathbf{R}_{ww}) \mathbf{a} = \mathbf{r}'_{ss}$$

$$(\mathbf{R}_{ss} + \mathbf{R}_{ww})\,\mathbf{h} = \mathbf{r}_{ss}$$

Written out, the set of linear equations becomes

$$\begin{bmatrix} r_{xx}[0] & r_{xx}[1] & \dots & r_{xx}[n] \\ r_{xx}[1] & r_{xx}[0] & \dots & r_{xx}[n-1] \\ \vdots & \vdots & \ddots & \vdots \\ r_{xx}[n] & r_{xx}[n-1] & \dots & r_{xx}[0] \end{bmatrix} \begin{bmatrix} h^{(n)}[0] \\ h^{(n)}[1] \\ \vdots \\ h^{(n)}[n] \end{bmatrix} = \begin{bmatrix} r_{ss}[0] \\ r_{ss}[1] \\ \vdots \\ r_{ss}[n] \end{bmatrix}$$

These are the wiener-Hopf filtering equations

For large enough n it can be shown that the filter becomes time invariant, the Wiener-Hopf filtering equations can be written as

$$\sum_{k=0}^{\infty} h[k] r_{xx}[l-k] = r_{ss}[l] \qquad l = 0, 1, \dots.$$

The same set of equations result if we attempt to estimate s[n] based on the present and infinite past. This is termed the infinite wiener filter.

$$\hat{s}[n] = \sum_{k=0}^{\infty} h[k]x[n-k]$$

And use the orthogonality principle.

Then,
$$E[(S[n] - \hat{S}[n]) x[n-l]) = 0$$
; $l=0,1,...$

Hence,

$$E\left(\sum_{k=0}^{\infty} h[k]x[n-k]x[n-l]\right) = E(s[n]x[n-l])$$

and therefore, the equations to be solved for the infinite wiener filter impulse response are

$$\sum_{k=0}^{\infty} h[k] r_{xx}[l-k] = r_{ss}[l] \qquad l = 0, 1, \dots.$$

The smoothing estimator takes the form

$$\hat{S}[n] = \sum_{k=-\infty}^{\infty} a_k x[k]$$

And by letting $h[k]=a_{n-k}$ we have the convolution sum

$$\hat{S}[n] = \sum_{k=-\infty}^{\infty} h[k] \times [n-k]$$

The wiener equation becomes

 ∞

$$\sum_{k=-\infty} h[k] r_{xx}[l-k] = r_{ss}[l] ; -\infty < l < \infty$$

The difference from the filtering case is that now the equations must be satisfied for all, and there is no constraint that h[k] must be causal.

Hence we can use Fourier transform techniques to solve for the impulse response then

$$H(f) = P_{ss} (f) / P_{xx} (f)$$

= $P_{ss} (f) / (P_{ss} (f) + P_{ww} (f))$

If we define SNR as

$$\eta(f) = P_{ss} (f) / P_{ww} (f)$$

Then the optimal filter frequency response becomes

$$H(f) = \eta(f) / (\eta(f)+1)$$

Clearly, the filter response satisfies 0 < H(f) < 1, and the wiener smoother response is $H(f) \approx 0$ when $\eta(f) \approx 0$ and $H(f) \approx 1$ when $\eta(f) \rightarrow \infty$

PREDICTION

The prediction problem in which we estimate $\theta = X[N-1+l]$ for $l \ge 1$ based on X.

we use $C_{xx} = R_{xx}$ and

$$\mathbf{C}_{\theta x} = E \left[x[N-1+l] \left[x[0] \ x[1] \ \dots \ x[N-1] \right] \right] \\ = \left[r_{xx}[N-1+l] \ r_{xx}[N-2+l] \ \dots \ r_{xx}[l] \right].$$

let the latter vector be denoted by r'_{xx} . Then

$$\hat{x}[N-1+l] = \mathbf{r}_{xx}^{\prime T} \mathbf{R}_{xx}^{-1} \mathbf{x}.$$

$$\mathbf{a} = \mathbf{R}_{xx}^{-1} \mathbf{r}_{xx}^{\prime}$$

$$\hat{x}[N-1+l] = \sum_{k=0}^{N-1} a_k x[k].$$

let $h[N-k]=a_k$ to allow filtering interpretation

$$\hat{x}[N-1+l] = \sum_{k=0}^{N-1} h[N-k]x[k]$$

$$= \sum_{k=1}^{N} h[k]x[N-k]$$

$$R_{xx}h=r_{xx}$$

where $\mathbf{r}_{xx} = [r_{xx}[l] r_{xx}[l+1] \dots r_{xx}[N-1+l]]^T$. In explicit form they become

$$\begin{bmatrix} r_{xx}[0] & r_{xx}[1] & \dots & r_{xx}[N-1] \\ r_{xx}[1] & r_{xx}[0] & \dots & r_{xx}[N-2] \\ \vdots & \vdots & \ddots & \vdots \\ r_{xx}[N-1] & r_{xx}[N-2] & \dots & r_{xx}[0] \end{bmatrix} \begin{bmatrix} h[1] \\ h[2] \\ \vdots \\ h[N] \end{bmatrix}$$

$$egin{aligned} & egin{aligned} r_{xx}[l] \ r_{xx}[l+1] \ dots \ r_{xx}[N-1+l] \end{aligned}$$

The minimum MSE for I-step linear predictor is

$$M_{\hat{x}} = r_{xx}[0] - \mathbf{r}_{xx}^{\prime T} \mathbf{R}_{xx}^{-1} \mathbf{r}_{xx}^{\prime}$$

$$M_{\hat{x}} = r_{xx}[0] - r_{xx}^{T} \mathbf{a}$$

$$= r_{xx}[0] - \sum_{k=0}^{N-1} a_k r_{xx}[N-1+l-k]$$

$$= r_{xx}[0] - \sum_{k=0}^{N-1} h[N-k] r_{xx}[N-1+l-k]$$

$$= r_{xx}[0] - \sum_{k=1}^{N} h[k] r_{xx}[k+(l-1)].$$

Assume that x[n] is an AR(1) process with ACF

$$egin{aligned} r_{xx}[k] &= rac{\sigma_u^2}{1-a^2[1]} \left(-a[1]
ight)^{|k|} \ \hat{x}[N] &= \sum_{k=1}^N h[k] x[N-k]. \end{aligned}$$

Let l=1 and we solve for the h[k].

N

$$\Sigma$$
 h[k] r_{xx} [m-k] = r_{xx} [m] ; m=1,2,.....,N
k=1
N
 Σ h[k] (-a[1])^[m-k] = (-a[1])^[m] ; m=1,2,.....,N
k=1

On solving above equation we get

$$h[k] = \begin{cases} -a[1] & k = 1 \\ 0 & k = 2, 3, \dots, N. \end{cases}$$

The one step linear predictor is $\hat{x}[N] = -a[1]x[N-1]$

And the minimum MSE is

$$M_{\hat{x}} = r_{xx}[0] - \sum_{k=1}^{N} h[k]r_{xx}[k]$$

$$= r_{xx}[0] + a[1]r_{xx}[1]$$

$$= \frac{\sigma_{u}^{2}}{1 - a^{2}[1]} + a[1]\frac{\sigma_{u}^{2}}{1 - a^{2}[1]} (-a[1])$$

$$= \sigma_{u}^{2}.$$

Similarly, the I step predictor by solving

N

$$\Sigma$$
 h[k] r_{xx} [m-k] = r_{xx} [m+l-1] ; m=1,2,....,N
k=1

substituting the ACF for an AR(1) process, this becomes

N

$$\Sigma$$
 h[k] $(-a[1])^{|m-k|} = (-a[1])^{|m+l-1|}$; m=1,2,.....,N

Then the impulse response is

$$h[k] = \begin{cases} (-a[1])^{l} & k = 1\\ 0 & k = 2, 3, \dots, N \end{cases}$$

The I step predictor is

$$\hat{x}[(N-1)+l] = (-a[1])^l x[N-1]$$

and the minimum MSE for I step predictor is

$$\begin{split} M_{\hat{x}} &= r_{xx}[0] - h[1]r_{xx}[l] \\ &= \frac{\sigma_u^2}{1 - a^2[1]} - (-a[1])^l \frac{\sigma_u^2}{1 - a^2[1]} (-a[1])^l \\ &= \frac{\sigma_u^2}{1 - a^2[1]} (1 - a^{2l}[1]) \,. \end{split}$$

The predictor decays to zero with increase in I, since |a[1]| < 1. This is also reflected in the minimum MSE, which is smallest for I=1 and increases for larger one.

