
Face Recognition Approaches and

Implementation of Eigenfaces Based Recognition

Bhuwan Mehta and Rahul Gupta

April 18, 2009

1 Introduction

Face recognition is challenging because it is a real world problem. The human
face is complex, natural object that tends not to have easily (automatically)
identi�ed edges and features. Because of this, it is di�cult to develop a mathe-
matical model of the face that can be used as prior knowledge when analyzing
a particular image.

Applications of face recognition are widespread. Perhaps the most obvious
is that of human computer interaction. One could make computers easier to
use if when one simply sat down at a computer terminal, the computer could
identify the user by name and automatically load personal preferences. This
identi�cation could even be useful in enhancing other technologies such as speech
recognition, since if the computer can identify the individual who is speaking,
the voice patterns being observed can be more accurately classi�ed against the
known individual's voice.

Human face recognition technology could also have uses in the security do-
main. Recognition of the face could be one of several mechanisms employed
to identify an individual. Face recognition as a security measure has the ad-
vantage that it can be done quickly, perhaps even in real time, and does not
require extensive equipment to implement. It also does not pose a particular
inconvenience to the subject being identi�ed, as is the case in retinal scans.

A �nal domain in which face recognition techniques could be useful is search
engine technologies. In combination with face detection systems, one could
enable users to search for speci�c people in images. This could be done by
having the user provide an image of the person to be found.

In this report we have analyzed the di�erent ways to recognize a face and
compared their performances. Initially we have discussed the steps involved in
feature-based face recognition. It evaluates the entire image as a whole. Then
we discussed the Holistic matching approach in which the machine automatically
determines which features to use. Then we have discussed the face recognition
using Eigenfaces. Lastly we have explained the working of Fisherfaces.

1



2 Feature-Based Face Recognition

This face recognition system is based on local features. Interesting feature points
in the face image are located by Gabor �lters, which give us an automatic system
that is not dependent on accurate detection of facial features. The feature points
are typically located at positions with high information content (such as facial
features), and at each of these positions we extract a feature vector consisting
of Gabor coe�cients. There are 3 processing steps involved in it.

� Segmentation: To eliminate the background

� Scaling: Performance decreases quickly if the scale is misjudged.

� Rotation: Symmetry operator to estimate head orientation [1]. Most of
the time Scaling and Rotation can be controlled easily but Segmentation
is necessary for higher accuracy.

2.1 Segmentation

It is dividing the images into (semantically meaningful) regions that appear to be
the images of di�erent surfaces. Reliable segmentation is possible with a priori
info, which is not available in most of the cases. The two major approaches for
doing segmentation are Histogram based segmentation and spatial coherence
based Segmentation.

2.1.1 Histogram based segmentation

The image is converted into Gray-scale and then a binary mask is applied to it
using a threshold. There are several ways for �nding the threshold. One of the
most popular way is using Histogramming. The Gray-level histogram gives the
number of cells having a particular gray-level as shown in �g. 1.

Figure 1: Gray Level Histogram

Ideally, object & background have constant di�erent brightness inside their
regions so we put a threshold between peak values in histogram as shown in �g.
2.

2



Figure 2: The left side picture has only 2 colours which are clealy visible in
Histogram on left side

But in practice, brightness is not constant; there is some spread due to
measurement noise, non-uniform illumination and non-uniform re�ection from
the surfaces. Such a case is shown in �g. 3.

Figure 3: E�ect of noise on Histogram

Some of the ways to choose the manual thresholding are:

1. Histogram shape-based: Analyze peaks, valleys, curvatures of smoothed
histogram.

2. Clustering-based: Iteratively, �nding a threshold, clustering based this
threshold.

3. Entropy-based: Choosing a threshold which max the info content in
histogram.

4. Attribute-based: Similarities between edge, etc of image & its thresh-
olded version.

5. Spatial thresholding (higher order stats): Threshold selection on
higher order statistics of spatial neighbours.

6. Local thresholding: Finding threshold values at each neighborhood us-
ing local stats.

3



In real time cases, its di�cult to do manual thresholding so we go for automatic
thresholding. Some of the ways to do automatic thresholding are:

1. P-tile method: It uses the a priori knowledge about the size of the ob-
ject. For eg: Assume an object with size p. Choose the threshold such
that %p of the overall histogram is determined as shown in �g. 4. It has
got a very limited use as we not always have a priori information about
the object.

Figure 4: Histogram divided into 2 parts of P and 100-P percent

2. Mode method: First the �peaks� and �valleys� of the histogram are lo-
cated and then threshold is set to the pixel value of the �valley�. Local
peaks are ignored and we choose peaks at a distance;then the valley be-
tween those peaks is found. Then we maximize �peakiness� (di�erence
btw peaks & valleys) to �nd the threshold as valley as shown in �g. 5.

Figure 5: Calculation of threshold using mode method

3. Iterative threshold selection: Starting with an approximate threshold,
re�ne it iteratively, taking into account some goodness measure e.g. T =
(µ1+µ2) / 2 where µi is the mean gray value of previous segmented region
i.

4



4. Adaptive Thresholding: In the case of an uneven illumination, the
global threshold has no use. So one of the approaches is to divide an im-
age into m×m sub-images and determine a threshold for each sub-image
as shown in �g. 6.

Figure 6: Calculation of threshold using adaptive thresholding

5. Double Thresholding: Starting from a conservative initial threshold
T1, we determine the �core� parts of the object. Continuing from this
core part, we grow this object by including neighboring pixels which are
between T1 and T2 as shown in �g. 7.

Figure 7: Calculation of threshold using double thresholding

2.1.2 Spatial Coherence

Histogram-based methods totally neglect the dependency between neighboring
pixels Neglecting this dependency may cause �salt-n-pepper� noise in the re-
sulting binary image. If spatial coherence between pixels is taken into account,
such noise can be eliminated by some preprocessing. Such an approach decreases
the error-rate but obviously does not guarantee being error-free. Dependency
between neighboring pixels or regions could be represented in various ways.
Regions can be represented in alternative forms such as:

5



1. Array representations : masks.

2. Hierarchical representations : quad-trees.

3. Symbolic representations : bounding box, centroid, moments, Euler num-
ber.

Figure 8: Representation of di�erent regions in an image

The output of any segmentation method can be improved by simply merging
similar neighboring regions together. Similarity can be measured by:

1. A simple threshold.

2. A geometrical attribute, such as �common boundary length�.

3. More sophisticated methods based on statistics .

Similarly, rather than merging, splitting can be required due to geometrical at-
tributes. A general region merge algorithm can be described as follows: Begin-
ning from an initial segmentation, an initial RAG is prepared; for each region
it is checked whether its neighboring regions are �similar�, if so, regions are
merged & RAG is modi�ed. For �region similarity�:

1. Compare their mean intensities: check with a predetermined threshold.

2. Compare their statistical distributions: check whether such a merge rep-
resents �observed� values better.

3. Check �weakness� of the common boundary: weak boundary: intensities
on two sides di�er less than a threshold.

Merge two regions if W/S > τ , where W=length of weak boundary

1. S = min{S1,S2} : minimum of two boundaries.

2. S : common boundary.

6



2.2 Eyes Extraction

The �rst feature we extract is eyes. Human eyes have many characteristics.
On the one hand, eyes are the darker region in human face, and have little
gray value in gray graph. On the other hand, gray changes greatly around eyes
region in which grads value of each point is also much big. Because eyes and
skin have many di�erences, we implement boundary detection in the candidate
facial region and project horizontally. Then we can basically identify the eyes'
horizontal position in A and B as shown in �g. 9. After, project vertically above
A and B, �nd the �rst peak position as C and D. Eyes' outline and left and
right canthus are located in two areas made up of A,C and B,D. The mean of
these two regions are considered as the position of pupils [2].

Figure 9: Eyes Extraction

2.3 Mouth Extraction

In aspect of mouth extraction, we take lip color into account. In the bottom
of face, we can consider the regions which satisfy the condition below as mouth
[2]:

Θ = across(
.5× (2R−G−B)√

(R−G)(R−B) + (G−B)
)

2.4 Nose Extraction

After locating the eyes and mouth, we can identify nose according to some
transcendent knowledge. If the distance between two pupils is seen as 1, the
distance from nose to the middle of eyes is from 0.7 to 1. Searching the darker
region around this we can probably �nd the position of nostril, and then �nd
the greatest luminance point above some certain areas of two nostrils as the top
of nose [2].

7



3 Holistic Matching

Feature matching can exploit the e�ciency found in manually tuning features
for a particular training image set. However, these rules have a severe limitation
on the type of object classes that can be found by the image retrieval system.
Objects greatly di�erent than those for which the system was designed will not
be retrieved accurately or e�ciently. For example, features tuned to automat-
ically �nd a human face will probably be useless for retrieving an image of a
car.

An alternative to feature matching is the �Holistic Matching� approach in
which the machine automatically determines which features to use. The repre-
sentation of the system is at the signal level instead of at the knowledge (e.g.,
shape) level. In this type of framework, a training phase �nds salient features
to use in the subsequent recognition phase of the system. These types of ap-
proaches can deal directly with complex, real-world images [3], [4], [5] because
the system is general and adaptive.

The e�cient selection of good features, however, is an important issue to
consider [6]. In this type of matching, we project the higher dimension im-
age vector onto a lower dimension feature space constructed using the training
data. Various dimensionality reduction techniques are used for the same. In
the subsequent subsections, we will be discussing the following two major holis-
tic matching/recognition techniques based on di�erent dimensionality reduction
techniques:

1. Eigenfaces technique based on Principle Component Analysis(PCA).

2. Fisherfacestechnique based on Linear DiscriminantAnalysis(LDA).

3.1 Eigenfaces Method

Introduction

The eigenface method for human face recognition is remarkably clean and sim-
ple. The basic concept behind the eigenface method is information reduction.
When one evaluates even a small image, there is an incredible amount of in-
formation present. From all the possible things that could be represented in
a given image, pictures of things that look like faces clearly represent a small
portion of this image space. Because of this, we seek a method to break down
pictures that will be better equipped to represent face images rather than im-
ages in general. To do this, we generate �base-faces� and then represent any
image being analyzed by the system as a linear combination of these base faces.
The generation of these base faces is discussed in detail later when we look at
the mathematical basis for this face recognition method.

Once the base faces have been chosen we have essentially reduced the com-
plexity of the problem from one of image analysis to a standard classi�cation
problem. Each face that we wish to classify can be projected into face-space and
then analyzed as a vector. A k-nearest-neighbor approach, a neural network,

8



or even a simply Euclidian distance measure can be used for classi�cation. The
problem is straightforward at this point.

Let us take an in-depth look at how the eigenface method works. The tech-
nique can be broken down into the following components:

1. Generate the eigenfaces.

2. Project training data into face-space to be used with a predetermined
classi�cation method.

3. Evaluate a projected test element by projecting it into face space and
comparing to training data.

Generation of Eigenfaces

Before any work can be done to generate the eigenfaces, sample faces are needed.
These images will be used as examples of what an image in face-space looks like.
These images do not necessarily need to be images of the people the system will
later be used to identify (though it can help); however the image should represent
variations one would expect to see in the data on which the system is expected
to be used, such as head tilt/angle, a variety of shading conditions,etc. Ideally
these images should contain pictures of faces at close to the same scale, although
this can be accomplished through preprocessing if necessary. It is required that
all of the images being used in the system, both sample and test images, be of
the same size. The resulting eigenfaces will also be of this same size once they
have been calculated.

It should be noted that it is assumed that all images being dealt with are
grayscale images, with pixel intensity values ranging from 0 to 255. While it is
possible to generate color eigenfaces, we will not be dealing with it here.

Suppose, there are K images in our data set. Each sample image will be
referred to as Xi where n indicates that we are dealing with ith sample image
(1 ≤ i ≤ K). Each Xi is a collumn vector. Generally images are thought of as
pixels, each having (x,y) coordinates with (0,0) being at the upper left corner (or
one could think of an image as a matrix with y rows and x columns). Converting
this to a column form is a matter of convenience, it can be done in either column
or row major form, so long as it is done consistently for all sample images it will
not a�ect the outcome. The size of the resulting Xi column vector will depend
on the size of the sample images. If the sample images are x pixels across and
y pixels tall, the column vector will be of size (x*y) Ö 1. These original image
sizes must be remembered if one wishes to view the resulting eigenfaces, or
projections of test images into face-space. This is to allow a normal image to
be constructed from a column vector of image pixels.

Let X be the mean of all Xi (1 ≤ i ≤ K). This is the step to calculate an
avergae face of the database. If one were to reinterpret the vector as a normal
image, it would appear as one might expect, as shown in Figure 10

9



Figure 10: In this �gure, averaging of two faces is shown

.
The next step is to calculate di�erence faces Ui such that Ui = Xi −X and

form a matrix U, such that U = [U1U2.....UK ]. Our goal now is to generate
the eigenfaces which is done by calculating the eigenvectors of the covariance
matrix UUT .This cannot be done directly as the size of UUT is (x*y)*(x*y)
which is very large. Clearly, doing these calculations on a resulting matrix of
this size is going to be taxing on all but the most specialized, advance hardware.
To avoid this problem, a trick from linear algebra is applied. The eigenvectors
of the UUT matrix can actually be found by considering linear combinations
of the eigenvectors of the UTU matrix. This is extremely usefully when one
realizes that the size of the UTU matrix is K Ö K. For practically all real world
situations K <�< (x*y). The eigenvectors wj of this matrix can be readily found
through the following formula:

wj =
∑K

l=1 UlElj√
λj

where Elj is the l
thcalue of the jtheigenvector of UTU and λj is the corresponding

eigenvalue of wjand Ej . The linear algebra part of this trick is given below:
Let the eigenvectors of UTU be Ej (1 ≤ j ≤ K) and the corresponding

eigenvalues be λj . Hence, we can write

UTUEj = λjEj

Multiplying both the sides by U,

(UUT )UEj = λj(UEj)

Thus, wj = UEj is the j
th eigenvector of UUTwith corresponding eigenvalue

λj .

10



Figure 11: shows nine eigenfaces generated from a face database. Each of these
images represents the image interpretation of one of the wj calculated previously.
As one can see, the images appear almost as ghosts, each with a di�erent portion
of the face accented.

Here we employ the fact that the eigenvalues for the UUT and UTU are the
same (though if we were going to calculate all of the eigenvalues of the UUT

matrix, we could get more values, the eigenvectors of the UTU only represent
the most important subset of the eigenvalues of the UUT matrix).

Signi�cance of Eigenvectors/Eigenvalues

Now that we have generated the eigenvectors for the covariance matrix of the
di�erences faces, let us evaluate what we have actually created. An eigenvector
whose corresponding eigenvalueis of greatest magnitude represents the direction
of greatest variance in a covariance matrix. The eigenvector corresponding to
the second largest eigenvalue represents the direction of greatest variance in
the covariance that is perpendicular to the �rst eigenvector. The third eigen-
vector represents the direction of greatest variance such that the eigenvector
is perpendicular to the �rst two. [7] This continues for all of the eigenvectors,
as we have ordered them by the magnitude of their corresponding eigenvalues,

11



λ1 ≥ λ2 ≥ ... ≥ λK .
The intuitive way of thinking of this process is that the �rst eigenvector has

the most discriminating power for the vectors that make up the columns of the
covariance matrix, the second one has the second most discriminating power,
the third one has the third most, and so on. . . Furthermore, the eigenvectors are
perpendicular, so what we are essentially doing is creating a coordinate system
(which we will refer to as face-space) that has the most possible discriminating
power for the vectors we used in creating it. This means that each one of
our eigenfaces actually represents an axis in our face-space. When an image
is represented in face space, it is really stored as a vector of coe�cients that
indicate how much each eigenface is to contribute to the �nal image. When
these individual contributions are added together, the original image is formed
(assuming the eigenfaces form a perfect basis for face-space). Projection of an
image into face space will be discussed in the next subsection.

Since the eigenfaces have been ranked by their discriminating ability, it is
not necessary to use all of the eigenfaces generated in classi�cation. It is pos-
sible to only consider a small subset of the best eigenvectors and still maintain
discriminating power. When the eigenfaces are ranked by magnitude of their
corresponding eigenvalues, only the top k eigenfaces need to be used. An exper-
imental evalaution of the number of optimum eigenfaces can also be used and
an example is shown in Fig. 12, where the optimum number of Eigenfaces to
be used comes out to be around 40 on a particular database. The perofrmance
of the recognition system as can be seen saturates after a particular number of
eigenfaces used.

12



Figure 12: The number of eigenfacesused vs. success in classi�cation for a
database. For this database, the optimum number of eigenfacescomes out to be
around 40.

Projecting Images into Face Space

Any image Z can be projected into face space by using the following formula:

W ′ = WT (Z −X)

Put simply, the vector of weights is found by multiplying the transpose of the
matrix W( W isformed by letting each eigenfaceform a column of the matrix) by
a vector that is found by subtracting the average face image (X, a column vec-
tor) from a sample or test image ( Z, a column vector). Note that, Z could be any
training or test image converted into column vector. Now that a method of pro-
jecting images into face space has been de�ned, the problem of face recognition
becomes one of everyday pattern recognition[4]. One such pattern recognition
technique using Euclidean distance model is discussed brie�y later.

13



Reconstruction of image from Eigenfaces

The eigenfacerecognition method was derived from work on analyzing the loss
of information by representing faces through weights of basis-faces. The basis
faces were found through principle component analysis techniques. Because
of this, it is possible to reconstruct an original face image from the known
eigenfaceweights.

Z ′ = WUT +X

Note that, the reconstructed face vector Z' is still in column vector form
after this reconstruction, and must be converted into a normal image prior to
viewing.

Figure 13: Images and their reconstruction from face-space representations;
original image on far left; 5, 10, 50, 100, 150, 200 eigenfacereconstructions from
left to right. The three rows are the cases of known subject, unknown subject
and not a face respectively.

Fig. 13 shows several images and their reconstruction from their weights
in face space. The �rst face is a training image used in the calculation of the
eigenfaces. The second image is a face that is of an individual that was not
present in any of the images used to calculate the eigenfaces. This image, once
again, does not exactly project into face space. This is compounded by the fact
that this face image has a light background where as the training images all had
black backgrounds. It is easy to forget that the eigenface derivations take into
account the entire image rather than just the portion that contains the face. This
means that accuracy in the reconstruction of the face can be lost as a balance is
formed between favoring representing the face and representing the background.
The last image is not a face image and is therefore represented poorly in face
space. Because of this, the reconstructed image is not recognizable due to loss

14



of information. It should be noted that for all of face images, the accuracy of
the reconstruction improves as the number of eigenfaces being used to represent
the image increases. As one can see for the �ower image this does not appear
to be the case. There is no signi�cant improvement in the representation for
all number of eigenfaces used. That is because of this fact that non-face images
live at such extreme points in face space that we are able to classify images as
non-face.

Classifying Faces

All the training sample images have been projected onto face space. Form a
cluster of all the images belonging to the same class (images of same user).
Now, if a test image is fed as an input, we should �rst project the test image
onto face space by the procedure discussed earlier. There can be 3 outputs
possible for a test image as given below,

1. Not a Face: It can be classi�ed as `not a face'. The interpretation of
�not a face� in the eigenfacesystem is that the projection of an image into
face-space not only does not yield a vector close to any know clusters
formed by a single individuals, but it is also signi�cantly far away from
all clusters.

2. Unknown Face: The �unknown face� classi�cation indicates that a test
image contains a face, but the face is not recognized by the classi�cation
system. This classi�cation is used to indicate that the face presented to
the classi�cation system does not closely match any face images on which
it has been trained.
If one wishes the classi�cation system to learn to recognize new individu-
als, the face space vectors of unknown faces could be recorded and then
unsupervised clustering methods could be employed to attempt to recog-
nize unknown recurring individuals.

3. Recognized Face: The �recognized face� classi�cation indicates that the
face recognition system was able to �nd a known individual that was
su�ciently similar to the one presented in the test image. Along with the
�recognized� classi�cation, the system then provides the identity of the
individual in the test image.

Image Classi�cation Technique

Since projection into face space allows us to consider images being tested to be
vectors in a reasonably low dimensional space, one could choose among several
commonly used pattern recognition techniques like Euclidean Distance Classi-
�er, k-Nearest Neighbour classi�er, neural networks, etc. We will describe the
euclidean distance classi�er in brief here.

The Euclidian distance classi�er is an e�cient classi�cation technique in
areas where clusters of points representing the di�erent entities to be classi�ed

15



are spaced far apart in feature space. A cluster represents all the images of a
subject in the database. An average of all the points corresponding to the lcuster
is calculated and plotted as a point in the face space as a point corresponding
to the cluster/sunbject.Given an image, it is �rst projected into the face space
as described in the preceding sections and the image is classi�ed based on to
whichever cluster average the image vector is nearest to.

Salient Features of EigenfacesMethod

1. Run-time performance is very good.

2. Construction is computationally intense, but need to be done infrequently.

3. Need to rebuild the eigenspace if adding a new person. Although not a
necessary step, but in the case of a sercurity based application, such an
action is generally preferred.

4. Starts to break down when there are too many classes as Eigenfaces
method might be a good method for representation of images but it is
not so e�ective when it comes to discriminating among the classes. It
would be discussed in more detail later.

5. Retains unwanted variations due to lighting and facial expression.

Implementation of Eigenfaces Method on Matlab and Re-
sults.

The Matlab code for the implementation of Eigenfaces method is geven in Ap-
pendix A. An example has also been shown with regard to the reconstruction
of image using the code.

3.2 Fisherfaces Method

Although the Eigenface projection is well-suited to object representation, the
features produced are not necessarily good for discriminating among classes
de�ned by the set of samples. The Eigenface method is also based on linearly
projecting the image space to a low dimensional feature space.

Let W be a projection matrix that projects a vector into the subspace. Vector
Z=WY is a new feature vector from samples of c classes with class means mi,
i= 1, 2, ..., c and the grand sample mean M for all the samples in all the classes.
In PCA, the projection W ∗ is chosen to maximize the determinant of the total
scatter matrix of the projected samples, i.e.,

W ∗ = argmaxW

N∑
j=1

(Yj −M)(Yj −M)T

where N is the total number of images in the database. Thus, the Eigenface

16



method, which uses principal components analysis (PCA) for dimensionality
reduction, yields projection directions that maximize the total scatter across
all classes, i.e., across all images of all faces. In choosing the projection which
maximizes total scatter, PCA retains unwanted variations due to lighting and
facial expression. As illustrated in Figs. 14 and stated by Moses et al., �the
variations between the images of the same face due to illumination and viewing
direction are almost always larger than image variations due to change in face
identity� [8]. Thus, while the PCA projections are optimal for reconstruction
from a low dimensional basis, they may not be optimal from a discrimination
standpoint.

Figure 14: The variations between the images of the same face due to illumina-
tion and viewing direction are almost always larger than image variations due to
change in face identity. Here is an example of such a case, when the same person
seen under di�erent lighting conditions can appear dramatically di�erent.

Since. the learning set is labeled, it makes sense to use this information
to build a more reliable method for reducing the dimensionality of the feature
space. Here we argue that using class speci�c linear methods for dimensionality
reduction and simple classi�ers in the reduced feature space, one may get better
recognition rates than with either the Linear Subspace method or the Eigenface
method. Fisher's Linear Discriminant (FLD) [9] is an example of a class speci�c
method, in the sense that it tries to �shape� the scatter in order to make it more
reliable for classi�cation. This method selects W in in such a way that the ratio
of the between-class scatter and the within class scatter is maximized, where we
can de�ne a within class scatter as,

Sw =
c∑

i=1

ni∑
j=1

(Yj −Mi)(Yj −Mi)T

where niis the number of samples in class i. Also, the between class scattered
matrix is de�ned as,

Sb =
c∑

i=1

(Mi −M)(Mi −M)T

17



In discriminant analysis, we want to determine the projection matrix W that

maximizes the ratio det(Sb)
det(Sw) In other words, we want to maximize the between-

class scatter while minimizing the within-class scatter. It has been proven that
this ratio is maximized when the column vectors of projection matrix W are the
eigenvectors of S−1

w Sb, associated with the largest eigenvalues. These Eigenvec-
tors are known as Fisherfaces. Thus, Fisherfaces method tries to project away
variations in lighting and facial expression using the knowledge of class while
maintaining discriminability. Rest of the discussion is same as the one carried
out in the case of Eigenfaces.

Conclusions

In this paper, we have discussed primarily two types of fae matching techniques
namely, feature based matching and holistic matching. Feature Based Face
Recognition is computationally less intense and retains only the information of
the object by eleminating the background but such type of recognition systems
are very object speci�c.The feature based recognition systems exploit the e�-
ciency found in manually tuning features for a particular training image set.
However, these rules have a severe limitation on the type of object classes that
can be found by the image retrieval system.

Then, we discussed Holistic matching in which the generation and matching
of the features is done by the computer itself. Under Holistic matching, we dis-
cussed two techniques Eigenfaces based matching and Fisherfaces based match-
ing. We discussed the generation of Eigenfaces and Fisherfaces and discussed
other isues related to them. We also learnt that Eigenfaces based recognition
is very much vulnerable to variations in light, facial expressions, etc and found
out that �sherfaces tend to project away such unneccesary variations. In the
end, we also implemented the Eigenfaces based face recognition on MATLAB
and were satis�ed with its working.

18



Figure 15: Distribution of some samples using the best two features in the PCA
and the FDA based spaces respectively. In the FDA based subspace, objects of
the same class are clustered much more tightly than in the PCA based space

19



Figure 16: The performance of the system for di�erent numbers of
MEF(Eigenfaces) and MDF(Fisherfaces) features, respectively. The number
of features from the subspace used was varied to show how the MDF subspace
outperforms the MEF subspace. 95% of the variance for the MDF subspace was
attained when 15 features were used; 95% of variance for the MEF subspace did
not occur until 37 features were used. Using 95% of the MEF variance resulted
in an 89% recognition rate, and that rate was not improved using more features

References

[1] Christopher J. Parsons and Mark S. Nixon, �Introducing Focus in the Gen-
eralized Symmetry Operator�, IEEE Signal Processing Letters, Vol. 6, No.
3, March 1999.

[2] Qian ZHANG and Zhi-Jing LIU, �Face Detection Based on Complexional
Segmentation and Feature Extraction�, Proceedings of the 2006 Interna-
tional Conference on Intelligent Information Hiding and Multimedia Signal
Processing (IIH-MSP'06).

[3] H. Murase and S.K. Nayar, �Illumination Planning for Object Recognition
in Structured Environments,� Proc. IEEE CS Conf. Computer Vision and
Pattern Recognition, pp. 31-38, Seattle, June 1994

[4] M. Turk and A. Pentland, �Eigenfaces for Recognition,� J. Cognitive Neu-
roscience, vol. 3, no. 1, pp. 71-86,1991.

[5] J. Weng, N. Ahuja, and T.S. Huang, �Learning Recognition and Segmenta-
tion Using the Cresceptron,� Proc. Int'l Conf Computer Vision, pp. 121-128,
Berlin, May 1993.

20



[6] D. Beymer and T. Poggio, �Face Recognition from One Example View,�
Proc. Int'l Conf. Computer Vision, pp. 500-507,1995.

[7] E. Gose, R. Johnsonbaugh, S. Jost, �Pattern Recognition and Image Anal-
ysis�, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.

[8] Y. Moses, Y. Adini, and S. Ullman, �Face Recognition: The Problem of Com-
pensating for Changes in Illumination Direction,� European Conf. Computer
Vision, 1994, pp. 286-296.

[9] R.A. Fisher, �The Use of Multiple Measures in Taxonomic Problems,� Ann.
Eugenics, vol. 7, pp. 179-188, 1936.

21



Appendix - A 
 
 
%Sample data is less so accuracy may not be very high. But if the images 
%from the database are fed as testimg then the results are very accurate 
%and we get exactly the same image. 
%test1.jpg is used as an example to show that it can also try to generate 
%an image not previously present in database. 
 
%image names must be: 1.jpg, 2.jpg...... 
%numimg = the number of last image 
numimg=9; 
%adjust row and col dimensions to match with image resolution i.i same ratio 
and keep them 
%below 100. the resolution 600x800 means 800 rows and 600 col. 
row=80; 
col=60; 
 
%images are read 
for i=1:numimg 
s=['a' num2str(i) '=imread(''' num2str(i) '.jpg'');']; 
eval(s) 
end 
 
%resize 
for i=1:numimg 
s=['a' num2str(i) '=imresize(a' num2str(i) ',[row,col]);']; 
eval(s) 
end 
 
%convert to gray scale if not previously converted 
% for i=1:numimg 
% s=['imwrite(rgb2gray(a' num2str(i) '),''' num2str(i) '.jpg'');']; 
% eval(s) 
% end 
 
 
 
%image converted to col. vector 
for t=1:numimg 
    m=1; 
    for i=1:col 
      for j=1:row 
            s=['A' num2str(t) '(m,1)=a' num2str(t) '(j,i);']; 
            eval(s); 
            m=m+1; 
      end 
    end 
end 
 
%Avg vector O is created 
O=zeros(row*col,1); 
for i=1:numimg 
    s=['A' num2str(i) '=double(A' num2str(i) ');']; 
    eval(s); 
    s=['O=O+A' num2str(i) ';']; 
    eval(s); 



end     
O=O/9; 
 
 
a=1;b=1; 
for i=1:row*col 
    avg(a,b)=O(i,1); 
    if (rem(i,row)==0) 
        b=b+1; 
        a=1; 
    else 
        a=a+1; 
    end;     
end   
%Now To create overall average image just type imshow(uint8(avg)) 
 
%Create single matrix An containing all the images as its columns 
An=A1; 
for i=2:numimg 
    s=['An=cat(2,An,A' num2str(i) ');']; 
    eval(s); 
end  
 
 
for i=1:numimg 
On(:,i)=An(:,i)-O; 
end 
 
cov=On*On'; 
 
cov2=On'*On; 
 
%Calculate eigen values for cov2 (dimension=numimgxnumimg) since its more 
%difficult to calculate eigen values for cov1 (dimension=row*col x row*col) 
[V,D]=eig(cov2); 
 
%u is the matrix containing eigenfaces as its columns. 
sum=0; 
for k=1:numimg 
    for l=1:numimg 
        sum=sum+On(:,l).*V(l,k); 
    end 
    u(:,k)= sum/sqrt(D(k,k)); 
    sum=0; 
end 
 
%utilda represents the vector of weights that result from a projection into 
facespace. 
for i=1:numimg 
    utilda(i,:)=(u(:,i))'*(An(:,i)-O); 
end 
 
%Atilda is what we get by applying weights to eigenfaces 
sum=zeros(row*col,1); 
for i=1:numimg 
    sum(:,1) = sum(:,1)+u(:,i)*utilda(i); 
end 



Atilda(:,1) = sum + O; 
     
     
% a=1;b=1; 
% for i=1:row*col 
%     final(a,b)=Atilda(i,1); 
%     if (rem(i,row)==0) 
%         b=b+1; 
%         a=1; 
%     else 
%         a=a+1; 
%     end;     
% end      
 
 
 
%testimg is the test image 
testimg=imread('test1.jpg'); 
testimg=imresize(testimg,[row,col]); 
 
%use below command if image is not in gray scale 
%testimg=rgb2gray(testimg); 
 
 
m=1; 
for i=1:col 
    for j=1:row 
        Atest(m,1)=testimg(j,i); 
        m=m+1; 
    end 
end 
Atest=double(Atest); 
 
%Calculate the weights for the test image 
for i=1:numimg 
utildatest(i,:)=(u(:,i))'*(Atest(:,1)-O); 
end 
 
%Calculate the generated image as a col vector 
sum=zeros(row*col,1); 
for i=1:numimg 
    sum(:,1) = sum(:,1)+u(:,i)*utildatest(i); 
end 
    Atildatest(:,1) = sum + O; 
 
%Convert generated img to row x col format     
a=1;b=1; 
for i=1:row*col 
    finalimg(a,b)=Atildatest(i,1); 
    if (rem(i,row)==0) 
        b=b+1; 
        a=1; 
    else 
        a=a+1; 
    end     
end   
imshow(uint8(finalimg)) 


	EE 602 Report
	Appendix

