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Abstract:

* This paper describes a method for
Spectral Estimation for Voice Conversion
application, based on Maximum Likelihood
Estimation technique.

* It also presents the conventional methods
of spectral parameter conversion and
addresses the problems with them.



Introduction:

* Voice conversion technology enables a
user to transform one person's speech
pattern into another pattern with distinct
characteristics

* A mapping function is used which consists
of utterance pairs of source and target
voices



Applications

» Speaker conversion
* Cross-language speaker conversion

* Narrow-band to wide-band speech for
telecommunication

 Speaking aid
* Modeling of speech production etc.



Classical Approaches and their

Limitations:

A. Codebook mapping based on hard
clustering and discrete mapping
i, = (J)

B. Fuzzy vector quantization, for soft
clustering

Z wm C;:J}
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Classical Approaches and their

Limitations:

C. More variable representation, by
modeling a difference vector

gt = Tt + Z ur(n )t (cgfz/) En))

D. Method using linear multivariate
regression (LMR)

gt = Azt + by,



Classical Approaches and their

Limitations:
E. Gaussian mixture mode

It realizes continuous mapping based on
soft clustering

M
Y, = Z wr(i)t (Amxt + bm)

m=1



Conventional GMM based mapping

e The joint probability density of the source
and target feature vectors is
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where z 1s a joint vector [xt Vi ]

and the mean vector and covariance matrix are written as
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Conventional GMM based mapping

» Conditional probability density can also
be represented as

P (3 N) = 37 P (b, M) P (s m, )

m=1

where
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Conventional GMM based mapping

e The mean vector and the covariance
matrix of m’th conditional probability
distribution are written as

EY, =y 4 pge-1 (y, @)

m, m m

DW = Yy _ y(w)yp(zz)-1y(zy)
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Conventional GMM based mapping

e |n conventional method the conversion is
based on MMSE as follows

Y, = Ely,|z]
— [P (yt|$t7 A(Z)) ytdyt

M
= / Y P (mlxt,k(‘”) P (yt |z¢, m, z\("")) y,dy,
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M
= Z P (m|xt,/\(z)) E%t

m=1



Drawbacks

Time-independent mapping
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Drawbacks

2. Oversmoothing

— Converted
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PROPOSED SPECTRAL
CONVERSION



 Trajectory based spectral conversion
process, instead of conventional frame based

one.

where,
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» Conversion considering feature correlation
between frames (dynamic features)



(vT v T
X17X27

T T
Y13Y2a

T T
X .., Xp

T T
Y, ....Y 1
-

1T

and Y, = [y, Ay]]"




MLE of Parameter Trajectory
* The joint vector is
Z, = [XLYI]T
* The GMM of joint probability density
P(Zi| X))
is trained using conventional training
framework.
e Likelihood Function to be maximized:

P (Y|Xa )\(Z}) = ﬁ i P (m|th)u‘:Z)) x P (YﬂXt?m? A(Z})

t=1 m=1



where,
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Derivation of Conditional Probability
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Derivation of Conditional Probability
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e Second order term is,

1 +
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e First order term is,

Xg {Naabtq = Nab (X6 — 1)}



i) EM Algorithm

y = arg max P (Y|Xj ,\(Z))

Q(Y,Y) = Z P (le, Y, ,\(Z)) log P (f”mp(j ,\(Z))

all m
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» Equating it to zero, we get
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ii) Approximation with suboptimum
mixture sequence

m = argmax P (m|Xj )\(Z))
L =1log P (m|X, A<Z>) P (Y| X. 1. ,\<Z>)
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Results:
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(Mel Cepstral distortion before conversion is 7.30 dB)



Summary

e GMM based Feature mapping

» Conditional Gaussian Distributions

e Maximum Likelihood technique for GMMs
» Expectation Maximization Algorithm



